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ABSTRACT: Accurate predictions of the location and timing of convection initiation (CI) remain a challenge, even in
high-resolution convection-allowing models (CAMs). Many of the processes necessary for daytime CI are rooted in the
planetary boundary layer (PBL), which numerical models struggle to accurately predict. To improve ensemble forecasts of
the PBL and subsequent CI forecasts in CAM ensembles, we explore the use of underused data from both the GOES-16
satellite and the national network of WSR-88D radars. The GOES-16 satellite provides observations of brightness temper-
ature (BT) to better analyze cloud structures, while the WSR-88D radars provide PBL height estimates and clear-air radial
wind velocity observations to better analyze PBL structures. The CAM uses the Advanced Research Weather Research
and Forecasting (WRF-ARW) Model at 3-km horizontal grid spacing. The ensemble consists of 40 members and observa-
tions are assimilated using the Gridpoint Statistical Interpolation (GSI) ensemble Kalman filter (EnKF) system. To evalu-
ate the influence of each observation type on CI, conventional, WSR-88D, and GOES-16 observations are assimilated
separately and jointly over a 4-h period and the resulting ensemble analyses and forecasts are compared with available ob-
servations for a CI event on 18 May 2018. Results show that the addition of the WSR-88D and GOES-16 observations im-
proves the CI forecasts out several hours in terms of timing and location for this case.

SIGNIFICANCE STATEMENT: The location and timing of new thunderstorm development is an important compo-
nent of severe weather forecasts. Yet the prediction of thunderstorm development in weather prediction models re-
mains challenging. This study explores using a combination of underused satellite and radar observations to better
define the atmospheric state used to start the weather prediction models, with the hope that this will lead to better fore-
casts of new thunderstorm development. Results show that underused observations from routinely available Doppler
weather radars and a geostationary satellite, all of which are currently available, can work synergistically to improve
forecasts of the location and timing of severe thunderstorm development.

KEYWORDS: Boundary layer; Radars/Radar observations; Satellite observations; Mesoscale forecasting; Data
assimilation; Mesoscale models

1. Introduction

Since 1980, severe thunderstorms have accounted for over
$344.8 billion in damages and 1972 deaths nationwide
(NOAA/National Centers for Environmental Information
2022). Given the lives lost and property damaged, accurate
predictions of severe convection and their associated haz-
ards are critical to operational weather forecasting. Advan-
ces in computational resources, observation platforms and
capabilities, numerical weather prediction models (NWPs),
and data assimilation techniques have improved detection
and forecasts of severe weather hazards over time (Stensrud
et al. 2013), but accurate prediction of convection initiation
(CI) remains a challenge (Kain et al. 2013). Moisture, lift,
and instability}the three ingredients needed for CI (Johns
and Doswell 1992)}often are not well represented in mod-
els and these inaccuracies likely contribute to the difficulties
of CI prediction.

Near-surface moisture, lift, and instability, as well as tem-
perature and winds, are strongly influenced by planetary
boundary layer (PBL) structure, thereby making CI very sen-
sitive to the evolution of the PBL (Crook 1996; McCaul and
Cohen 2002; Martin and Xue 2006; Sobash and Stensrud
2015; Hu et al. 2019). Model forecasts that do not initiate con-
vection at the correct location and time can have negative
feedbacks on model variables in response to inaccurate con-
vective prediction (Brooks et al. 1994; Stensrud 1996; Kerr
et al. 2019). Therefore, accurate prediction of ongoing convec-
tion as well as PBL structure is critical for convection fore-
casts (Johnson and Mapes 2001; Browning et al. 2007).

Several approaches have been used to incorporate ongo-
ing convection in model initial conditions using Doppler
radar observations of radar reflectivity factor (hereafter re-
flectivity) and radial velocity, including a cloud analysis (Hu
et al. 2006), three-dimensional variational approaches (Gao
et al. 1999; Crook and Sun 2002; Wu et al. 2002; Dixon et al.
2009), four-dimensional variational approaches (Sun 2005;
Sun and Zhang 2008), and ensemble-based methods (Snyder
and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005;
Aksoy et al. 2009; Yussouf et al. 2013). Results from these
studies demonstrate the benefits of an accurate depiction
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of ongoing convection to the prediction of its subsequent
evolution.

Observations from the GOES-16, operational in 2017, pre-
sent unique opportunities for improved CI prediction. The Ad-
vanced Baseline Imager (ABI) instrument of this satellite
allows for scans of the continental United States (CONUS) ev-
ery 5 min. For infrared channels, the spatial resolution is 2 km,
sufficient for visualizing the development of convection (Schmit
et al. 2017). The availability of new satellites with more frequent
observations at finer resolution has increased the use of satellite
observations in convection-allowing models (CAMs; Zou et al.
2013; Jones et al. 2015, 2020; Zhang et al. 2016; Cintineo et al.
2016; Minamide and Zhang 2018; Zhang et al. 2019). Zhang
et al. (2018, 2019), Jones et al. (2020), Minamide and Posselt
(2022), and Johnson et al. (2022) illustrate success in the predic-
tion of isolated supercell storms when assimilating all-sky radi-
ances from the GOES-16 ABI. Several operational centers are
moving toward assimilating cloudy radiances, in addition to
clear-sky radiances (e.g., Geer et al. 2018). The assimilation of
satellite observations is effective in removing precipitating and
nonprecipitating clouds in models where they are not observed,
and vice versa. The addition of satellite observations can im-
prove upon forecasts initialized with Doppler radar observa-
tions (Jones et al. 2015, 2020) as well as providing information
regarding ongoing convection where radar observations are
unavailable.

Clear-air Doppler radar and other remote sensing observa-
tions can be incorporated into model initial conditions to bet-
ter depict PBL structure. Accurate depictions of PBL winds
are particularly important for CI, as drylines, airmass bound-
aries, and outflow boundaries all provide lift that contributes
to storm development (Weckwerth and Parsons 2006). Im-
proved characterization of these features in the PBL can be
gained from use of radial velocity observations (Xu et al.
1995). While WSR-88D radial velocity observations have been
assimilated within storms when the reflectivity is $20 dBZ to
improve depictions of wind fields (Snyder and Zhang 2003;
Aksoy et al. 2009; Wheatley et al. 2015; Yussouf et al. 2015),
clear-air radial velocities also are routinely available prior
to CI. However, they are often assimilated only as a single
vertical wind profile at each radar, calculated using the velocity–
azimuth display (VAD) method (Browning and Wexler 1968).
Clear-air radial velocities are shown to improve the pre-CI PBL
winds in observing system simulation experiments (Zhang et al.
2009; Huang et al. 2020, 2022).

Hu et al. (2019) assimilate Atmospheric Emitted Radiance
Interferometer (AERI) temperature and mixing ratio profiles,
Doppler lidar VAD wind profiles, and WSR-88D clear-air
VAD wind profiles to obtain improved PBL structures during
the daytime, leading to improved CI forecasts, while Degelia
et al. (2019) find similar results from assimilating ground-based
remote sensing observations at night. Tangborn et al. (2021)
and Dang et al. (2022) assimilate lidar backscatter retrievals of
PBL height to improve PBL forecasts, as PBL height is a key
parameter defining the PBL yet forecasts of PBL height can dif-
fer from observations by a factor of 2 (Grimsdell and Angevine
1998; Bright and Mullen 2002; Stensrud and Weiss 2002). In
both studies, the assimilation had the largest impact in the

daytime. These results highlight the benefit of remotely sensed
observations within the PBL for improving PBL depiction and
subsequent forecasts of CI. To our best knowledge, PBL height
observations are not assimilated in operational models, and
prior research warrants further exploration into the use of
these routine observations.

Much of the recent work assimilating both radar and satellite
observations has been accomplished using the ensemble Kalman
filter (EnKF; Evensen 1994; Houtekamer and Zhang 2016). The
EnKF provides flow-dependent background error covariances
and has been widely used for improving severe thunderstorm
forecasts in CAMs (e.g., Snyder and Zhang 2003; Aksoy et al.
2009; Jones et al. 2016, 2020; Zhang et al. 2018, 2019). Results
from Johnson et al. (2015) suggest that the ensemble Kalman
filter approach yields precipitation forecasts that are more
skillful than those from a three-dimensional variational ap-
proach. The Warn-on-Forecast System (WoFS; Stensrud et al.
2009, 2013; Gallo et al. 2017) uses EnKF data assimilation with
observations assimilated every 15 min, allowing for a relatively
high-temporal-resolution assimilation to generate short-term
forecasts (0–6 h) of high-impact weather events. Ensemble
data assimilation has shown success in linking all-sky radiances
with the model temperature, water vapor, and wind fields
(Houtekamer and Zhang 2016).

This exploratory study assimilates infrared brightness tem-
peratures (BTs) from the GOES-16, in conjunction with clear-
air radial wind and PBL height from the WSR-88Ds, to better
represent ongoing convection and PBL structures in the CAM
ensemble initial conditions and to evaluate if these observa-
tions improve daytime CI forecasts. To our best knowledge,
observations of radar-estimated PBL height, preconvective
PBL winds from radars, and all-sky radiances from geostation-
ary satellites, are not assimilated in any operational model.
The focus in this work is to simultaneously assimilate satellite
and radar observations prior to CI and understand how these
observations subsequently influence CI several hours later.
Section 2 provides a summary of the selected event on 18 May
2018, while section 3 provides details on the numerical weather
prediction model, assimilation method, observations, and data
assimilation experiments. The experiment results are discussed
in section 4, which explores different combinations of radar
and satellite data assimilated (separately and jointly), followed
by a summary in section 5.

2. Overview of 18 May 2018 case

At 1800 UTC 18 May 2018, a surface low is present in south-
east Colorado, with a quasi-stationary front extending eastward
into central Kansas (Fig. 1). The dryline progresses steadily
eastward throughout the day, and at 1900 UTC is observed to
the east of the Texas–New Mexico border (Fig. 1), stretching
south from the center of the low. There is some elevated con-
vection that forms near Lubbock, Texas, around 1800 UTC,
that moves northeast and reaches the southeastern corner of
the Texas Panhandle at 2200 UTC (Fig. 2a). Eastward propaga-
tion and mixing of the dryline act to create lift within an envi-
ronment in which surface-based convection could develop.
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Per the NOAA Storm Prediction Center (SPC), the pri-
mary threats in the Texas and Oklahoma Panhandles are
damaging winds and large hail. A severe thunderstorm watch
is issued at 1935 UTC covering far western Oklahoma and the
eastern Texas Panhandle. For the CI that is the focus of this
study, isolated storms develop in the northeastern Texas Pan-
handle between 2100 and 2200 UTC, the first forming just

east of Amarillo, Texas (Fig. 2b). Over the next hour, storms
continue to develop along a north–south line that stretches
from the northeastern Texas Panhandle across the Oklahoma
Panhandle. After 2300 UTC, additional storms form to the
east along the outflow boundaries created by the original con-
vection, leading to a larger multicellular convective cluster by
0000 UTC (Fig. 2c). The broad convective cluster in the Texas

FIG. 1. NOAA Storm Prediction Center’s Mesoscale Discussion 0450 from 1900 UTC
18 May 2018, depicting the dryline (orange half-circles), effective bulk shear (in knots,
1 kt ’ 0.51 m s21; light and navy blue), mean-layer convective available potential energy
(MLCAPE; in J kg21; solid orange contours), quasi-stationary front (blue triangles and red
half-circles), and the center of the low pressure system (red L).

FIG. 2. Observed composite reflectivity (in dBZ, shaded according to outset color bar) at (a) 1900 UTC 18 May, (b) 2200 UTC 18 May,
and (c) 0000 UTC 19 May 2018. The area of the figure depicts the model domain, and the black box in (a) outlines the smaller region used
to focus on CI.
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and Oklahoma Panhandles produces large hail and dozens of
damaging wind reports.

3. Methods

a. Numerical model

The High-Resolution Rapid Refresh (HRRR) configuration
(Benjamin et al. 2016) of the Advanced Research Weather
Research and Forecasting (WRF-ARW) Model (Skamarock
et al. 2008) version 3.8.1, is used for the CAM ensemble fore-
casts. The top of the model is at 50 hPa and it has a single
domain of 200 3 200 3 51 grid points. The simulations all
have horizontal grid spacing of 3 km. The domain includes
portions of eastern New Mexico, southeastern Colorado, and
southern Kansas (Fig. 2a). A large portion of the domain is
northern and western Texas and western Oklahoma}where
the convection formed in their respective panhandles. Physical
parameterizations in this study mirror those of the operational
HRRR configuration of the WRF-ARW. For PBL and
surface processes, the Mellor–Yamada–Nakanishi–Niino
(MYNN) 2.5-level turbulent kinetic energy (TKE) scheme
(Nakanishi and Niino 2006, 2009; Olson et al. 2019) is used
with the Rapid Update Cycle land surface model (Benjamin
et al. 2004). The Rapid Radiative Transfer Model for general
circulation models (RRTMG; Iacono et al. 2008) is selected
for the parameterization of longwave and shortwave radiation.
The Thompson et al. (2008) microphysics scheme is used, pro-
viding mass mixing ratios of hydrometeors as well as simulated
S-band reflectivity.

To create the 40-ensemble member initial conditions, two
20-member ensemble forecasts from the 0000 and 0600 UTC
18 May 2018 Global Ensemble Forecast System (GEFS) anal-
yses are run forward to 0000 UTC 19 May 2018. A slightly
larger model domain (10% outward) is used to allow enough
space outside of the model domain’s boundaries, while keep-
ing the outermost grid points of the input simulations away
from the output domain. For each set of 20 ensemble mem-
bers, the 1200 UTC means of each set are subtracted from all
the forecast outputs from 1200 to 0000 UTC of the next day.
These 12-h perturbations are added back to the HRRR analy-
sis at 1200 UTC, and these recentered forecasts are used as
initial and boundary conditions for the EnKF experiments.
Additional random perturbations to soil temperature, soil
moisture, and vegetation fraction are used in the ensemble
members, as in Zhang et al. (2018, 2019).

b. Data assimilation approach

The community version of the Gridpoint Statistical Interpola-
tion (GSI; version 3.7) based EnKF (version 1.3) system, (Wu
et al. 2002; Kleist et al. 2009; Wang et al. 2013; Wang and Lei
2014; Johnson et al. 2015; Liu et al. 2018) extended to ingest sat-
ellite radiances, (Jones et al. 2020; Johnson et al. 2022) is used to
assimilate observations. This version includes an ensemble square
root filter (Whitaker and Hamill 2002).

Relaxation to prior perturbation is applied (Zhang et al.
2004), where 80% of prior perturbations and 20% of posterior
perturbations spread is used to maintain suitable ensemble

spread throughout cycling. Multiplicative inflation of 10%
(Anderson and Anderson 1999) is used on the background en-
semble forecasts to increase spread for GSI to better ingest the
observations. The GSI EnKF updates the standard atmospheric
variables, including hydrometeors, but does not update land
surface variables such as soil moisture and soil temperature.

c. Observations for assimilation

1) BRIGHTNESS TEMPERATURES FROM GOES-16ABI

The GOES-16 ABI is a passive instrument that measures
visible and infrared radiances in 16 specific wavelength bands
(Schmit et al. 2017). Radiances reflect atmospheric conditions
over a deep layer in clear-sky conditions but are dominated by
cloud-top conditions when clouds are present. The ABI radi-
ance observations are available over CONUS at least every
15 min and are converted to brightness temperatures (BTs).
The gridded observations used are from channel 10 (7.43-mm
lower- to midlevel-tropospheric water vapor channel and a
weighting function that peaks near 615 hPa), as assimilated
successfully by Zhang et al. (2018, 2019), and are available as
the Cloud Moisture Imagery Product (CMIP). Because the
GOES-16 ABI views Earth at an angle, the coordinates of the
observations are displaced from their true locations. To ac-
count for this, a parallax correction (e.g., Soler and Eisemann
1994; Jones et al. 2020) is applied to the data using its coordi-
nates and the cloud-top height product “ACHA,” also from
the ABI. The parallax correction varies from roughly 10–
20 km, depending on the latitude, longitude, and cloud-top
height. The improved position from the parallax correc-
tion is important because the parallax error is of the scale
of clouds themselves, especially at the time of CI. The BTs are
assimilated at their ;2.5-km horizontal resolution. The Com-
munity Radiative Transfer Model (CRTM; Han et al. 2006) is
the observation operator for simulated BT calculation from
WRF-ARWModel output.

The observation height for clear-sky BTs is set to 5000 m,
which roughly corresponds to the peak of the weighting func-
tion of channel 10 of the ABI. For cloudy-sky conditions, an
observation height is found by using cloud-top height product.
The designation between clear and cloudy sky is determined
by whether there is a value at the corresponding grid point in
the cloud-top height product. A vertical covariance localiza-
tion length of 4.0 of the scale height and a horizontal covari-
ance localization length of 30 km are used, owing to the high
density of GOES-16 observations. Scale height determines
the pressure at which the observation will have no influence,
using 2ln(P/Pref), where Pref 5 1000 hPa and is used to con-
strain the impact of the observations to that area and to re-
move the potential for spurious correlations. The observation
errors are 2 K for clear-sky radiances and 4 K for cloudy-sky
radiances, following Jones et al. (2020), and the BT obser-
vations are available at least every 15 min from 1500 UTC
18 May to 0000 UTC 19 May 2018.

2) CLEAR-AIR RADIAL VELOCITIES FROM WSR-88DS

Radial velocities are the component of the velocity of targets
toward or away from the radar along a given radar azimuth
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angle, which can provide information on the PBL wind field
near the radar. Clear-air returns are echoes that are not pro-
duced by hydrometeors and typically are present in the PBL
out to at least 30 km along all azimuths around the radar site
for the lowest several elevation angles with reflectivity values
often less than 20 dBZ. Here we use WSR-88D Level-II data
from KAMA (Amarillo, Texas), KDDC (Dodge City, Kansas),
KFDR (Frederick/Altus Air Force Base, Oklahoma), KFDX
(Cannon Air Force Base, NewMexico), KICT (Wichita, Kansas),
KTLX (Oklahoma City, Oklahoma), and KVNX (Vance Air
Force Base, Oklahoma). The separation of the radars is large
enough that regions in between the radars do not have radial ve-
locity observations within the PBL, indicating the impact of the
observations is not uniform across the model domain.

Observations with a magnitude less than 2 m s21 or greater
than 40 m s21, or with a distance, 2 km or. 200 km from the
radar, or associated with reflectivity $ 20 dBZ, are discarded.
The remaining velocity data are de-aliased following Eilts and
Smith (1990). Superobservations (SOs) with a horizontal spac-
ing of roughly 2 km azimuthally and 10 km radially are created
in a manner similar to Zhang et al. (2009) and grouped into spa-
tial bins. This spacing is chosen to best fit the model grid spac-
ing. The standard deviation is calculated for all observations
within an elevation and within each bin. If the standard devia-
tion of one bin is greater than 1.5 times the standard deviation
of the entire elevation scan, then all observations within the bin
are discarded. In each bin, observations that are less than
2 times of the bin’s standard deviation from the mean are kept.
If more than half of the observations within a bin are discarded
during the previous step, then the entire bin is discarded to re-
duce the influence of noisy observations. Finally, the SO of each
bin is designated as the median value of the remaining observa-
tions, located in the center of the bin. These SOs are available
every 15 min from 1500 UTC 18May to 0000 UTC 19May 2018.

The clear-air SO radial velocities have a horizontal localiza-
tion of 30 km, along with a vertical covariance localization of
0.36 scale height. The radial velocity observation errors are
3 m s21 following Jones et al. (2020). Reflectivity observa-
tions are not assimilated.

3) PBL HEIGHT ESTIMATES FROM WSR-88DS

Melnikov et al. (2011, 2013) show that minima in differential
radar reflectivity (ZDR) occur at the top of the convective PBL
and are caused by Bragg scattering. Banghoff et al. (2018) build
on these results to show that quasi-vertical profiles (QVPs;
Ryzhkov et al. 2016) of ZDR can be used to identify PBL height.
The QVP is created by taking an azimuthal mean of a given
radar variable at each range gate, converting radial distance
from the radar site to height above ground level (AGL), and
then combining successive volume scans to yield a time–height
plot of the variable. Banghoff et al. (2018) show that daytime
PBL height can be estimated accurately from the height of the
temporally coherent minima in ZDR seen in the QVP (Fig. 3).

PBL height observations provide useful information on
PBL structure that can be leveraged in CAM data assimila-
tion. PBL heights are calculated at each radar following
Banghoff et al. (2018) every 15 min from 1500 UTC 18 May to

0000 UTC 19 May 2018. The PBL height observations are
treated as single point observations.

The PBL height observation operator is defined as the aver-
age value of model diagnosed PBL height over a 10 3 10 grid
point (30 km 3 30 km) region centered on the model grid
point closest to the location of the WSR-88D radar correspond-
ing to the PBL height observation. This 900-km2 region closely
approximates the PBL region sampled by the radar in clear-air
conditions. Results from single observation tests (not shown) in-
dicate that when a PBL height observation is greater than the
background PBL height the increments develop a warmer,
deeper and drier boundary layer, whereas when a PBL height
observation is lower than the background PBL height the incre-
ments develop a cooler, shallower and moister PBL. Based
upon the single observation tests and examinations on their cor-
relations with other model state variables, PBL height observa-
tions are assimilated using a vertical localization of 2.3 scale
height and a horizontal localization of 600 km, as correlations
between PBL height and thermodynamic variables are seen to
extend above the PBL and over several hundreds of kilometers
horizontally (not shown). Based on Banghoff et al. (2018), the
observation error for PBL height is set at 250 m.

4) CONVENTIONAL OBSERVATIONS

Standard conventional data from NCEP’s Automated Data
Processing (ADP) are used in all experiments. The conventional
data used includes altimeter setting, temperature, water vapor
mixing ratio, pressure, and winds from land stations, radiosonde
soundings, and automated aircraft data. The horizontal and ver-
tical covariance localizations are 300 km and 0.4 scale height,
respectively. All the covariance localizations are constructed us-
ing a fifth-order correlation function, following Gaspari and
Cohn (1999). Errors in the conventional data of temperature,
moisture, surface pressure, and wind observations are specified

FIG. 3. QVP of ZDR (in dB, shaded according to color bar). Data
from the KFDR WSR-88D radar at 4.58 elevation angle from
1200 UTC 18 May to 0000 UTC 19 May 2018. The black line de-
notes the top of the PBL as estimated from the vertical minimum
in ZDR.
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further at http://www.emc.ncep.noaa.gov/mmb/data_processing/
prepbufr.doc/table_2.htm. All the errors and covariance localiza-
tions for the different types of observations are summarized in
Table 1.

d. Experiment design

Four data assimilation experiments are conducted, with all en-
semble members run for 3 h, starting at 1200 UTC 18May 2018,
to let errors grow and create flow dependencies. All experiments
assimilate data every 15 min from 1500 to 1900 UTC, followed
by a 5-h forecast out to 0000 UTC 19 May 2018 free of data as-
similation. A control experiment, named “CONV,” assimilates
conventional observations only and serves as a reference for
comparisonwith the other experiments. Twomore experiments
assimilate these underused observations from either radar or
satellites after conventional observations. “RADAR” has clear-
air radial velocities assimilated first, followed by PBL height ob-
servations; “SAT” has BT observations assimilated. Last, the
“ALL” experiment has all four observation types assimilated:
conventional, clear-air radial velocity, PBL height, and BT, in
that order. Table 2 summarizes the assimilated observations in-
cluded in each of the experiments. Figure 4 displays the number
of each type of observations during the assimilation period and
shows that the numbers of BT and radial velocity SOs are two
orders of magnitude more than conventional and PBL height
observations. The order in which the observations are assimi-
lated is intended to constrain the large-scale environment first,
and then to help define smaller mesoscale and convective fea-
tures pertinent to CI.

4. Results

a. Validation of increments from assimilated observations

To understand the changes to the analyses from the assimi-
lation of radar and satellite data, three single time data assimi-
lation tests are conducted at 1900 UTC using the background
forecasts from CONV. These experiments avoid the problems
in interpretation that arise when using different backgrounds
and allow one to focus on the contributions of the different
observation groups to the analysis. In “RADAR” only clear-

air radial velocities and PBL heights are assimilated; in “SAT”
only BTs are assimilated; and in “ALL” clear-air radial veloci-
ties, PBL heights, and BTs are assimilated.

Results show that the increment patterns are similar in all ex-
periments, but that the larger increments from RADAR extend
only from the surface to 700 hPa, while larger increments from
SAT and ALL extend throughout the troposphere (Fig. 5). In
all three experiments, the increments lead to a warmer and
drier PBL to the west of2100.58 and a cooler and moister PBL
to the east. A vertical dipole also is seen in which temperature/
moisture increments immediately above the PBL between
approximately 800 and 700 hPa are opposite in sign to the
increments within the PBL. The increments between 800
and 700 hPa often are stronger in RADAR than in SAT.
The combination of low-level warming in the PBL and cooling
just above the PBL leads to a deeper PBL, whereas low-level
cooling in the PBL and warming just above the PBL leads to a
shallower PBL. The larger increments just above the PBL in
RADAR suggest that the PBL height observation acts to ad-
just the predicted PBL height to move toward the observation.

Zhang et al. (2022) show that the strongest correlations be-
tween BT and model variables in clear-sky conditions occur
near the peak of the channel weighting function (;615 hPa
for channel 10). The similarities in the low-level increment
patterns in Fig. 5 suggest that the increments below 700 hPa
are largely produced by the conventional and radar observa-
tions. The exception is the large increments west of 21028 in
SAT and ALL that are associated with observed clouds,
whereas the rest of the cross section has clear skies. Horizon-
tal plots of convergence show differences between RADAR
and SAT, particularly in the northcentral Texas Panhandle
where the wind field in RADAR is convergent in the PBL
whereas the wind field in SAT is divergent (not shown). The
convergent wind field in RADAR is attributed to the assimi-
lation of clear-air radial velocities owing to its location and
shape. Calculations of convective available potential energy
(CAPE) indicate that the combination of radar and BT obser-
vations leads to a narrowing and strengthening of the zone of
highest CAPE in the Texas Panhandle within the region of CI
that is weaker in the other experiments (not shown).

TABLE 1. Observation error, horizontal covariance localization length, and vertical localization length for each observation type.

Observation type Observation error
Horizontal covariance
localization length

Vertical covariance
localization length

Conventional GSI 300 km 0.4 scale height
Clear-air radial velocity 3 m s21 30 km 0.36 scale height
PBL height 250 m 600 km 2.3 scale height
BT 2 K for clear; 4 K for cloudy 30 km 4.0 scale height

TABLE 2. Assimilated observations in each experiment; “Y” denotes that the experiment uses those observations listed above.

Expt name Conventional Clear-air radial velocities PBL heights BTs

CONV Y
RADAR Y Y Y
SAT Y Y
ALL Y Y Y Y
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Results further show that ALL retains many of the features
seen in both RADAR and SAT (Figs. 5e,f). The overall assess-
ment is that the radar observations influence the PBL structure
and thus can yield an improved analysis of the preconvective

low-level environment, while the BT observations yield an im-
proved analysis of ongoing convection and the atmospheric
state above the capping inversion. It is encouraging that adjust-
ments from both radar and satellite data assimilation are main-
tained when they are simultaneously assimilated.

b. Assimilation and forecast period verification

To assess the impact of assimilating PBL heights, clear-
air radial velocities, and BTs using the EnKF during the assimi-
lation window and the subsequent ensemble forecasts, the
observation-space diagnostic metric of bias-corrected root-
mean-square innovation/error (hereafter RMSI/RMSE) is
used. RMSIs are calculated from 1500 to 1900 UTC, and RMSEs
are calculated from 1900 UTC 18May to 0000 UTC 19May 2018.
RMSI (RMSE) is defined as

RMSI 5

��������������
h(d 2 d)2i

√
,

where d5 yo 2H(xb ) is the innovation (error) of the background
(forecast) ensemble mean, and yo represents the observations.

FIG. 4. Number of observations of each type used in the experi-
ments from 1500 to 1900 UTC 18 May 2018. The types include con-
ventional observations (black), clear-air radial velocities (magenta),
PBL heights (green), and BTs (cyan).

FIG. 5. West-to-east vertical cross sections along 358N of (a),(c),(e) ensemble-mean increments (posterior minus
prior) of potential temperature (in K) and (b),(d),(f) water vapor mixing ratio (in g kg21) in the (a),(b) RADAR;
(c),(d) SAT; and (e),(f) ALL single-time data assimilation tests. Note that horizontal plots show that these patterns
extend horizontally as well as vertically. Potential temperature increments vary from 20.8 to 0.8 K and water vapor
mixing ratio increments vary from21 to 1 g kg21.
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Innovations are only valid for times or variables where the
observations are directly assimilated. The square of differ-
ences of each innovation from the domain average of all in-
novations d is calculated as the average value in brackets. H
is the observation operator during the assimilation period or
forecast model, which is the PBL height operator, the radar
radial velocity operator, or the CRTM for BTs. x is the model
state vector with superscript b denoting the background ensemble-
mean forecasts. Smaller RMSI (RMSE) values indicate smaller
discrepancies from the observations and hence better analysis and
forecast accuracy.

The evolution of RMSIs for PBL heights and clear-air radial
velocities during the assimilation period (1500–1900 UTC) and
RMSEs during the forecast period (1900–0000 UTC) for the as-
similated variables for all four experiments is shown in Fig. 6.
For PBL height (Fig. 6a), all experiments begin with RMSIs
close to 200 m and increase approximately linearly with time
over the next 3 h. A bifurcation occurs around 1730 UTC be-
tween the experiments that do and do not assimilate PBL
heights, with CONV and SAT having larger RMSIs than ex-
periments that assimilate PBL heights (RADAR and ALL).
This bifurcation occurs as the PBL begins to deepen more rap-
idly (e.g., Fig. 3) after the morning stable layer is removed by
surface heating. By 1900 UTC, RADAR has the lowest RMSI
value (near 400 m), whereas SAT has the largest RMSI value
(near 450 m). It is encouraging that the PBL height assimilation

improves PBL analyses with respect to observed values, even
though the land surface variables are not updated during assim-
ilation. During the forecast period from 1900 to 0000 UTC, the
RMSEs increase in all four experiments as the PBL deepens,
with RADAR having the lowest RMSE over the forecast pe-
riod. Most experiments have RMSEs near 600 m at 2200 UTC,
with values nearly doubling by 0000 UTC. The experiments
that assimilate BTs all have larger RMSEs at the end of the
forecast period compared to the experiments that do not assim-
ilate BT, suggesting that the assimilation of BT observations
can negatively influence PBL height forecasts. However, as is
shown later, the experiments that assimilate BTs also develop
more convection; it may be the impact of convection on the
PBL that produces these differences.

In contrast to PBL heights, RMSIs for clear-air radial veloci-
ties decrease over the first few cycles of assimilation, approach-
ing values near 2 m s21 by 1700 UTC (Fig. 6b). These values
are of similar magnitude to those seen when assimilating radial
velocity observations in precipitation (Yussouf et al. 2013).
SAT has the largest RMSI, whereas RADAR has the smallest
RMSI by 1900 UTC. It is encouraging that the two radar obser-
vations work synergistically in RADAR to yield an improved
analysis of the PBL wind field. As seen with PBL heights, clear-
air radial velocities see a notable increase in RMSEs during the
forecast period. However, unlike PBL height assimilation, there
is no clear difference in RMSEs between the four experiments

FIG. 6. Values of RMSI and RMSE vs time (UTC) for (a) PBL
heights (m) and (b) clear-air radial velocities (m s21) from 1500 UTC
18 May to 0000 UTC 19 May 2018 from the following experiments:
CONV (black), RADAR (green), SAT (magenta), and ALL (cyan).
Vertical line (dashed gray) at 1900 UTC indicates the transition from
the assimilation period to the forecast period.

FIG. 7. Values of RMSE vs time (UTC) for (a) 2-m air tempera-
ture (K) and (b) channel-8 BTs (K) from 1500 UTC 18 May to
0000 UTC 19 May 2018 for the following experiments: CONV
(black), SAT (magenta), RADAR (green), and ALL (cyan). Verti-
cal line (dashed gray) at 1900 UTC indicates the transition from
the assimilation period to the forecast period.
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after 2000 UTC, suggesting that the improvements in the PBL
wind field from clear-air radial velocity assimilation have a
short lifetime.

Two different sets of observations not used in assimilation,
GOES-16 ABI channel-8 infrared BTs and 2-m air tempera-
tures from state-run mesonets, are used for verification (Fig. 7).
Observations from both the Oklahoma (Brock et al. 1995;
McPherson et al. 2007) and West Texas (Schroeder et al. 2005)
Mesonets, which are not assimilated in any of the experi-
ments, are used to calculate RMSEs of 2-m air temperature
every 15 min from 1500 to 0000 UTC. RMSEs calculated
from the Mesonet observations are near 1.8 K to begin, and
steadily improve throughout the assimilation period (Fig. 7a).
By 1900 UTC, RMSEs of CONV are near 1.15 K and the
lowest of all four experiments. Curiously, ALL surprisingly
has the highest RMSEs by the end of the assimilation period,
although the differences are not large. Reasons for this behav-
ior are unclear, although the impacts of spurious convection
(shown later) may play a role. In contrast, during the forecast
period the experiments that assimilate BT observations have
smaller RMSEs than those without. At 0000 UTC, RMSEs
from CONV and RADAR are at 3 K, while SAT and ALL
are closer to 2.5 K. Verification of 2-m dewpoint temperature

yields similar results, but with less differentiation between
experiments (not shown).

RMSEs of BTs from all experiments are identical at 1500UTC,
with values near 2.8 K (Fig. 7b). However, after one assimilation
cycle, the experiments assimilating BTs (SAT and ALL) have
RMSEs slightly lower than the experiments that do not assimi-
late BTs (CONV and RADAR). Although the RMSEs of SAT
and ALL are initially lower than RADAR and CONV, SAT
and ALL are higher by 1900 UTC, which is likely related to
spurious convection. Early in the forecast period, experi-
ments with channel-10 BTs assimilated see a noticeable de-
crease in RMSEs for channel-8 BTs. SAT and ALL have
comparable RMSEs, but all experiments see an increase in
RMSE from 3 to 4 K at 1900 UTC to nearly 10 K at 0000 UTC
in the poorest performing experiments, CONV andRADAR.

The RMSIs and RMSEs suggest that during the assimilation
and forecast periods the PBL height and BT observations pro-
duce longer-lasting positive impacts on the ensemble forecasts.
In contrast, the assimilation of clear-air radial velocity improves
RMSEs for roughly an hour after the end of the assimilation
period. It is encouraging that the independent observations of
2-m air temperature show the ensembles with BT assimilation
are more accurate than the ensembles without BT assimilation.

FIG. 8. (a) Observed composite reflectivity and neighborhood ensemble probability of simulated composite reflectivity exceeding 35 dBZ
for the (d) CONV, (c) RADAR, (d) SAT, and (e) ALL experiments at 1900 UTC 18 May 2018.

E URE E T AL . 803MARCH 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/27/24 06:08 PM UTC



Differences between experiments that did and did not assimi-
late radar data are minimal, as seen when comparing CONV to
RADAR and SAT to ALL.

c. Convection initiation

A qualitative evaluation of the experiments furthers an
understanding of the potential value of assimilating BT ob-
servations, clear-air radial velocities, and PBL height for CI
forecasts. Neighborhood ensemble probabilities (NEPs) of
simulated composite reflectivity (Schwartz and Sobash 2017) ex-
ceeding 35 dBZ for the experiments display several characteris-
tic behaviors at the end of the assimilation period at 1900 UTC
(Fig. 8). A 9-km-radius circle for the neighborhood is used to
account for the horizontal displacements of convection that can
occur within individual ensemble members. First, the experi-
ments without BT assimilation (CONV and RADAR) fail to
develop convection anywhere in the model domain by the end
of the assimilation period. As shown later, this lack of deep con-
vective activity persists for several hours and limits the accuracy
of the CI forecasts. Second, the experiments that assimilate BT
(SAT and ALL) capture the ongoing convection in the south-
ern Texas Panhandle to various degrees, with NEPs above
90%, but also produce scattered storms in other parts of the do-
main. The benefit of satellite data is even more clearly shown

when the ensemble mean BTs are compared against obser-
vations (Fig. 9). Only experiments with BTs assimilated
have clouds with temperatures below 265 K (SAT and
ALL). However, scattered convective cells develop in one
or two ensemble members as seen by the speckled pattern
in the simulated BTs, with SAT appearing to have more
spurious storms than ALL.

The deep convection that initiates in the northeastern
Texas Panhandle at 2130 UTC has developed into several iso-
lated storms with reflectivity values . 55 dBZ by 2200 UTC
(Fig. 10a). Also, the observed region of deep convection in
the southern Texas Panhandle has increased in intensity and
coverage over the past few hours and is seen in the corner of
the smaller domain. The experiments without BTs assimilated
produce deep convection in only a few ensemble members in
the southern Texas Panhandle where no convection is ob-
served (Figs. 10b,c). In contrast, SAT and ALL develop deep
convection in the northeastern Texas Panhandle (Figs. 10d,e),
although the NEPs for SAT are low. In contrast, ALL has
NEPs above 20% in the vicinity of observed CI. These com-
parisons suggest that the combined radar and satellite obser-
vations assimilated in ALL help place CI in roughly the
correct location and time 3 h after the data assimilation cy-
cling ends. This is ultimately due to improved PBL, dryline

FIG. 9. (a) Observed brightness temperature of channel-10GOES-16ABI and ensemble-mean CRTM simulated ABI channel-10 BTs for
the (b) CONV, (c) RADAR, (d) SAT, and (e) ALL experiments at 1900 UTC 18May 2018.
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and cold pool representation on this case day from radar and
satellite data.

The observed BTs at 2200 UTC (Fig. 11a) show several
small regions of colder (and taller) cloud tops in the northern
Texas Panhandle where the CI of interest occurred, indicating
the location of the most intense convection. Ensemble means
of simulated BTs in CONV and RADAR (Figs. 11b,c) still
lack any cold cloud tops (below;230 K) outside of Colorado.
SAT and ALL show colder cloud tops from earlier convection
in the southern Texas Panhandle (Figs. 11d,e), and indicate
the formation of colder cloud tops, synchronous with observa-
tions, in the northern Texas Panhandle. ALL appears to have
some of the coldest cloud tops compared to observations,
with some spurious convection in southern Kansas. The spuri-
ous convection in Kansas occurs in all experiments, but is
more widespread in the ensembles that assimilate BT.

At the end of the forecast period at 0000 UTC, all the ex-
periments without BTs assimilated continue to underpredict
the observed convection (Fig. 12). Some members produce a
line of convection that stretches northeastward from a point
in the Oklahoma Panhandle region into Kansas, perhaps best
seen in RADAR (Fig. 12c). The ensemble-mean simulated
BTs from SAT and ALL better agree with the observed BTs
in terms of the location of the coldest cloud tops, although
with a noticeable eastward shift in the overall convective
region.

Another observation that is not directly assimilated is radar
reflectivity, which is used to quantitatively compare the en-
semble forecasts. Ensemble equitable threat scores (ETS;
Wilks 2011) are selected to examine the simulated composite
reflectivity forecasts during both the assimilation window and
the forecast periods. Positive values relative to CONV are

considered success in that there is improvement in the predic-
tion of deep convection. These values can vary greatly from
experiment to experiment, as the ETS is sensitive to location
displacement errors. The domain used for these calculations
is shown in Fig. 2a and centers on the Texas Panhandle where
CI is observed. ETS is defined as

ETS 5
H 2 R

H 1 M 1 F 2 R
,

where

R5
(H 1 M)(H 1 F)

n
,

H, M, and F are the number of total hits, misses, and false
alarms, respectively, calculated from all 40 ensemble mem-
bers, and n is the total number of grid points that are used for
the calculation. ETS values above 0 indicate skill compared to
a random forecast, with skill improving as values approach 1.
Because reflectivity is not assimilated, and the convective re-
gions of interest are not present at the end of the data assimi-
lation period, the expectation is that ETS values will be
positive, but well below 0.5. To account for small, horizontal
displacements in individual ensemble members, a neighbor-
hood maximum (NM) approach is used (Schwartz 2017) for
the ETS calculation. An event occurrence is determined by
whether an event occurs anywhere within the neighborhood
(defined as a 9-km-radius circle) of the forecast or observation
point. Hits are designated when the forecast and observed
event occurs in the neighborhood, while false alarms occur
when a forecast event happens, but no observed event occurs
in the neighborhood. For misses, this is designated when the

FIG. 10. (a) Observed composite reflectivity zoomed into the Texas Panhandle region and zoomed-in neighborhood ensemble probabil-
ity of simulated composite reflectivity exceeding 35 dBZ for the (b) CONV, (c) RADAR, (d) SAT, and (e) ALL experiments at
2200 UTC 18May 2018.
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observed event occurs in the neighborhood, but the forecast
does not. Vertical displacements in individual ensemble mem-
bers are not accounted for in the analysis.

The reflectivity observations are from the Iowa Environ-
mental Mesonet radar mosaic archive (https://mesonet.agron.
iastate.edu/). Simulated reflectivity is first interpolated to the
radar’s lowest elevation scan (i.e., base reflectivity), and then
a composite of base reflectivity is taken from the lowest eleva-
tion scan. Like the radial velocities, reflectivity observations
are dense, so thinning is used for comparison between the
observed values and the model output. For each of the ra-
dars, thinning is employed such that the horizontal grid
spacing is approximately 3 km. Therefore, n is the number
of reflectivity observations at each evaluation time multi-
plied by the number of ensemble members (40). Reflectiv-
ity thresholds of 20 and 35 dBZ are used in the calculations,
with 20 dBZ chosen to represent regions of general precipi-
tation, and 35 dBZ is chosen to represent regions of convec-
tive precipitation.

Values of NM ETS for the 20-dBZ threshold are close to 0
early on when there is no significant precipitation or organized
convection in the model subdomain, as expected (Fig. 13a). The
NM ETS values that are slightly above zero prior to 2100 UTC
are produced by ground clutter overlapping with a weak cell in

a few ensemble members. Only after CI around 2115 UTC do
NM ETS values from the experiments containing satellite ob-
servations increase. The experiments that assimilate BTs see an
increase in NM ETS values, with SAT and ALL having the
largest increase in NM ETS between 2100 and 2230 UTC, as
the areal coverage of convection increases. By 0000 UTC, ALL
has the largest NM ETS of the experiments. Values of NM
ETSs for CONV and RADAR increase only after 2200 UTC,
reaching only ;0.12 toward the end of the forecast. Although
the experiments that did not assimilate satellite data struggled
with CI, the location of observed storms align with these experi-
ments ;2 h later. Focusing on the time near CI (roughly 2100–
2230 UTC), the experiments with satellite data assimilation
have the largest values of NM ETS, showing their ability to cap-
ture the CI and its early evolution.

Figure 12b displays NM ETSs using the 35-dBZ threshold.
SAT and ALL again have the largest NM ETSs throughout
the forecast period, getting close to 0.1 by 0000 UTC. Similar
to the 20-dBZ threshold (Fig. 13a), values of NM ETS in SAT
and ALL increase sharply around 2100 UTC, close to when
observed CI occurs. Experiments that did not assimilate BTs
only begin to show an increase in NM ETS after 2200 UTC.
Differences are relatively minor when directly comparing
ALL and SAT or RADAR and CONV, but the experiments

FIG. 11. (a) Observed brightness temperature of channel-10 GOES-16 ABI and ensemble-mean CRTM simulated ABI channel-10 BTs
for the (b) CONV, (c) RADAR, (d) SAT, and (e) ALL experiments at 2200 UTC 18 May 2018.
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in those pairs that assimilate satellite data, ALL and SAT,
again have slightly larger NM ETS values from the time of CI
until the end of the free forecasts for this larger reflectivity
threshold.

d. Features leading to CI

A careful subjective evaluation of each of the 160 ensemble
forecasts is conducted to determine the model features that
lead to CI. Selected model fields are animated and evaluated

over the 2-h period prior to CI. This analysis shows that there
are two primary mesoscale features present in individual
members that ultimately lead to CI: 1) the dryline, and 2) out-
flow boundaries from convection that initiates in the southern
portion of the domain around 1830 UTC during the data as-
similation window.

To quantify the influence that the dryline and outflow
boundaries have on CI occurrence, identification of these fea-
tures at the time of initial CI is done for each individual

FIG. 12. (a) Observed brightness temperature of channel-10 GOES-16 ABI and ensemble-mean CRTM simulated ABI channel-10 BTs
for the (b) CONV, (c) RADAR, (d) SAT, and (e) ALL experiments at 0000 UTC 19 May 2018.

FIG. 13. Values of neighborhood maximum ETS vs time (UTC) for composite radar reflectivity using (a) a 20-dBZ
threshold and (b) a 40-dBZ threshold, from 1515 UTC 18 May to 0000 UTC 19 May 2018, for the following experi-
ments: CONV (black), RADAR (green), SAT (magenta), and ALL (cyan).
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ensemble member in the experiments. The process begins by
first determining if CI occurs between 1900 and 2130 UTC
anywhere in the subdomain that covers the Texas Panhandle
(Fig. 2a). Composite reflectivity values greater than 10 dBZ at
any point in this domain constitute CI, even if the convection
does not persist.

Identification of the dryline and outflow boundaries in the
model forecasts is done through a subjective analysis of low-
est model level potential temperature, mixing ratio, and
wind vectors, and maximum vertical velocity between the
surface and 800 hPa (i.e., within the PBL). An example of
these variables at 2100 UTC is shown in Fig. 14 for a

selected ensemble member from each of the experiments.
The analysis indicates that ensemble member 11 in CONV
and member 24 in RADAR have no CI at this time, ensem-
ble member 40 in SAT has CI associated with the dryline,
and ensemble member 40 in ALL has CI associated with
both the dryline and outflow boundaries. Individual mem-
bers are chosen to be representative cases showing the fea-
tures for the corresponding experiment.

Results from all members indicate that CONV and RADAR
do not exhibit CI from outflow boundaries in any of their
40 members prior to the initial CI event, as they do not capture
the ongoing convection in the southern portion of the model

FIG. 14. (a),(d),(g),(j) Simulated composite reflectivity; (b),(e),(h),(k) surface dewpoint temperature (shaded), maximum vertical veloc-
ity between the surface and 800 hPa (blue), and wind vectors; and (c),(f),(i),(l) surface potential temperature (shaded) and wind vectors
for (a)–(c) ensemble member 11 of CONV, (d)–(f) ensemble member 24 of RADAR, (g)–(i) ensemble member 40 of SAT, and
(j)–(l) ensemble member 20 of ALL experiments at 2100 UTC 18 May 2018. The range of contours for maximum vertical velocity is
0.75 m s21, by increments of 0.25–1.5 m s21. The dryline (black line) and outflow boundaries (gray line) are annotated.
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domain (e.g., Figs. 9b,c). However, in both SAT and ALL the
earlier convection that starts near 1830 UTC 19 May 2018
to the south produces outflow boundaries beginning around
1930 UTC that generally travel northward and are present in
many members. We use the following criteria to quantify the
overall frequency that the mesoscale features are associated
with CI; if the dryline or outflow boundary is within five model
grid points (15 km) of CI, that feature is associated with CI for
the ensemble member. If both the dryline and outflow bound-
ary are within 5 model grid points of CI, then both features are
associated with CI for the ensemble member.

Figure 15 shows a bar graph of the number of ensemble
members (out of 40) that have CI associated with the either
the dryline, outflow boundary, both, no CI, as well as mem-
bers that have CI but did not meet the distance criterion for
the dryline or outflow boundary. Results show that CONV
has roughly one-third of its members (13 of 40) producing CI,
which occurs exclusively in association with the dryline. Most
members in CONV do not forecast CI, however, and when
they do forecast it, the resulting convection is often short-
lived. Results for RADAR show that CI is produced 46%
more often than in CONV (19 of 40 in RADAR), suggesting
again that the radar observations are adding value to the en-
semble. Both CONV and RADAR, lacking BT assimilation,
do not capture the earlier convection to the south, which neg-
atively influences their ability to produce CI.

In contrast to CONV and RADAR, SAT and ALL both
have 40 members producing CI. SAT has 8 members that pro-
duce CI exclusively associated with the dryline, while no
members from ALL are only linked to the dryline. Most en-
semble members in SAT have CI associated outflow bound-
aries (31 of 40), with 15 of these members producing CI
exclusively associated with an outflow boundary, more than
any other experiment. In ALL, most members have both the
dryline and outflow boundaries present near CI (28 of 40),

which is significantly more than in SAT (16 of 40). Based on
Fig. 15, radar data improves characterization of the dryline,
while satellite data improves representation of ongoing con-
vection, which leads to cold pools that help trigger CI hours
later.

One reason why the experiments that assimilate BT obser-
vations are more successful in producing CI is likely related to
their prediction of lift. Histograms are produced of the maxi-
mum PBL (i.e., surface to 800 hPa) vertical motion at each
grid point in the smaller domain, with bins every 0.05 m s21.
To highlight differences from CONV, the histogram counts
from CONV are subtracted from the histogram counts for
RADAR, SAT, and ALL and plotted. Results from 2100 UTC
(Fig. 16) show that SAT and ALL have more grid points with
maximum vertical motion between 0.2 and 0.4 m s21, values
typically associated with mesoscale features such as a dryline or
outflow boundary in the model (larger values are typically asso-
ciated with deep convection). Lock and Houston (2014) investi-
gate forecasts from the 20-km Rapid Update Cycle (RUC)
model and conclude that the amount of predicted lift often sep-
arates CI and no-CI events. Thus, our results suggest that the
assimilation of BT observations leads to stronger lift in the fore-
casts, which is associated with the dryline and outflow bound-
aries. Results from RADAR are unclear, as it produces weaker
vertical motions than CONV, but circumstantial evidence
suggests that the areas of vertical motion in RADAR are
more coherent than found in CONV (see Fig. 14) and may
be more favorable for the sustained lift needed for CI. Simi-
larly, it is also unclear why ALL has weaker vertical motions
than SAT, although fewer spurious storms may be a contrib-
uting factor (see Fig. 9).

5. Summary

A case study is used to explore whether the assimilation of
GOES-16 BT observations and underutilized WSR-88D ob-
servations of PBL height and clear-air radial velocities com-
bined can yield improvements to CAM ensemble forecasts of
CI on 18 May 2018. The GSI EnKF is used to assimilate the
observations over a 4-h window from 1500 to 1900 UTC into

FIG. 15. Bar graph of model features associated with CI in indi-
vidual ensemble forecasts in the CONV, RADAR, SAT, and ALL
experiments. CI via the dryline (blue), outflow boundary (orange),
both features (yellow), no CI (purple), and CI occurring that did
not meet the criteria in section 4c (green) are shown.

FIG. 16. Histogram showing differences in counts of maximum
PBL vertical motion between CONV and the other three experi-
ments at 2100 UTC 18 May 2018: RADAR-CONV, SAT-CONV,
and ALL-CONV. Histogram bins are every 0.05 m s21.
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40-member ensembles. All experiments assimilate conven-
tional observations, with additional experiments produced
with and without the radar and BT observations assimilated
and results compared with observations. Ensemble forecasts
for all 4 experiments are valid from 1900 UTC 18 May to
0000 UTC 19 May 2018. Results show that ALL, the experi-
ment that assimilates conventional, radar and satellite data,
yields improved 2.5-h forecasts of CI in the Texas Panhandle
compared to the other experiments. The experiments without
BT assimilation, CONV and RADAR, are unable to develop
convection at the right time and place.

Both the radar and satellite data appear to provide unique
benefits during the assimilation period. The RMSI and RMSE
calculations suggest that the assimilation of PBL height and
BTs produce a longer-lasting positive impact on the ensemble
forecasts than seen with the assimilation of clear-air radial ve-
locity. Surface 2-m air temperature RMSEs are lower in ex-
periments that assimilate BTs, suggesting that improvements
to the cloud field analyses can also improve low-level temper-
atures. Results from a feature-driven subjective analysis show
that outflow boundaries moving northward from deep convec-
tion to the south are key to producing CI in many of the en-
semble members, as these boundaries produce the stronger
lift needed for CI. Although channel-10 BTs are sensitive to
middle atmosphere water vapor, changes to the analyses from
satellite data also are seen in temperature. The results high-
light the value of representing ongoing convection in model
initial conditions, because without this information, the sub-
sequent predictions of deep convection are less accurate.
Results suggest that while BT assimilation alone is valuable,
the ensembles with satellite DA further improve when the
WSR-88D radar observations of PBL height and clear-air
radial velocity are assimilated, which alter the PBL structure
in the analyses and lead to better 2-m temperature forecasts
within the preconvective environment. Radar data assimilation
alone yields increases in the probability of CI in the Texas
Panhandle, but not in a particular location. The radar observa-
tions are most valuable when they are assimilated concurrently
with satellite data. Another concern in the ensemble forecasts
is the prevalence of widespread, scattered, spurious convection
resulting from the BT assimilation, deserving further
attention.

The CAM ensemble results suggest that there is promise
for improved forecasts of CI timing and location, several
hours out from initialization, via the assimilation of clear-air
radar and satellite observations linked to moisture, instability,
and lift – the three ingredients of CI. The observations of PBL
height, clear-air radial winds, and BTs appear to work syner-
gistically to provide improved initial conditions for the ensem-
ble forecasts. Although these results are from a single case
study, they are suggestive of the potential value of these new
observations. Future studies are needed to determine whether
the assimilation of radar and satellite observations for the de-
piction of the PBL and cloud field can consistently improve
the prediction of severe weather. Future studies also should
explore how other routine observations that are available can
be leveraged in CAMs for accurate CI predictions. Addition-
ally, an unexplored question in this work is the impact of the

order of assimilation for the observation types on the final
analyses. Sensitivities to the order are not explored in this
paper, but warrants consideration, particularly with underused
observation types such that they can be used optimally to im-
prove analyses and forecasts in concert with observations that
are already assimilated.
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S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles}A
new way to look at polarimetric radar data. J. Atmos. Oce-
anic Technol., 33, 551–562, https://doi.org/10.1175/JTECH-D-
15-0020.1.

Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J.
Goodman, and W. J. Lebair, 2017: A closer look at the ABI
on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681–
698, https://doi.org/10.1175/BAMS-D-15-00230.1.

Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D.
Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas
Mesonet: A technical overview. J. Atmos. Oceanic Technol.,
22, 211–222, https://doi.org/10.1175/JTECH-1690.1.

Schwartz, C. S., 2017: A comparison of methods used to populate
neighborhood-based contingency tables for high-resolution
forecast verification. Wea. Forecasting, 32, 733–741, https://
doi.org/10.1175/WAF-D-16-0187.1.

}}, and R. A. Sobash, 2017: Generating probabilistic forecasts
for convection-allowing ensembles using neighborhood ap-
proaches: A review and recommendations. Mon. Wea. Rev.,
145, 3397–3418, https://doi.org/10.1175/MWR-D-16-0400.1.

MONTHLY WEATHER REV I EW VOLUME 151812

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/27/24 06:08 PM UTC

https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1029/2021JD036157
https://doi.org/10.1029/2021JD036157
https://doi.org/10.1175/0065-9401-28.50.71
https://doi.org/10.1175/0065-9401-28.50.71
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
https://doi.org/10.1175/MWR-D-14-00180.1
https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/MWR-D-19-0379.1
https://doi.org/10.1175/MWR-D-19-0379.1
https://doi.org/10.1175/BAMS-D-11-00264.1
https://doi.org/10.1175/BAMS-D-11-00264.1
https://doi.org/10.1175/MWR-D-18-0140.1
https://doi.org/10.1175/2009WAF2222201.1
https://dtcenter.org/sites/default/files/community-code/enkf/docs/users-guide/EnKF_UserGuide_v1.3.pdf
https://dtcenter.org/sites/default/files/community-code/enkf/docs/users-guide/EnKF_UserGuide_v1.3.pdf
https://doi.org/10.1175/MWR-D-13-00082.1
https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2
https://doi.org/10.1175/JTECH1976.1
https://doi.org/10.1175/JTECH-D-10-05048.1
https://doi.org/10.1175/JTECH-D-10-05048.1
https://doi.org/10.1175/JTECH-D-12-00210.1
https://doi.org/10.1175/JTECH-D-12-00210.1
https://doi.org/10.1175/MWR-D-17-0367.1
https://doi.org/10.1175/MWR-D-17-0367.1
https://doi.org/10.1175/JAS-D-21-0140.1
https://doi.org/10.1007/s10546-005-9030-8
https://doi.org/10.2151/jmsj.87.895
https://www.ncdc.noaa.gov/billions/
https://doi.org/10.25923/n9wm-be49
https://doi.org/10.1175/JTECH-D-15-0020.1
https://doi.org/10.1175/JTECH-D-15-0020.1
https://doi.org/10.1175/BAMS-D-15-00230.1
https://doi.org/10.1175/JTECH-1690.1
https://doi.org/10.1175/WAF-D-16-0187.1
https://doi.org/10.1175/WAF-D-16-0187.1
https://doi.org/10.1175/MWR-D-16-0400.1


Skamarock, W. C., and Coauthors, 2008: A description of the Ad-
vanced Research WRF version 3. NCAR Tech. Note NCAR/
TN-4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

Snyder, C., and F. Zhang, 2003: Assimilation of simulated Dopp-
ler radar observations with an ensemble Kalman filter. Mon.
Wea. Rev., 131, 1663–1677, https://doi.org/10.1175//2555.1.

Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface
Mesonet observations with the EnKF to improve ensemble
forecasts of convection initiation on 29 May 2012. Mon.
Wea. Rev., 143, 3700–3725, https://doi.org/10.1175/MWR-D-
14-00126.1.

Soler, T., and D.W. Eisemann, 1994: Determination of look angles to
geostationary communication satellites. J. Surv. Eng., 120, 115–
127, https://doi.org/10.1061/(ASCE)0733-9453(1994)120:3(115).

Stensrud, D. J., 1996: Effects of a persistent, midlatitude meso-
scale region of convection on the large-scale environment
during the warm season. J. Atmos. Sci., 53, 3503–3527, https://
doi.org/10.1175/1520-0469(1996)053,3503:EOPMMR.2.0.CO;2.

}}, and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of
the 3May 1999 tornado outbreak.Wea. Forecasting, 17, 526–543,
https://doi.org/10.1175/1520-0434(2002)017,0526:MMEFOT.2.
0.CO;2.

}}, and Coauthors, 2009: Convective-scale Warn-on-Forecast
System: A vision for 2020. Bull. Amer. Meteor. Soc., 90,
1487–1500, https://doi.org/10.1175/2009BAMS2795.1.

}}, and Coauthors, 2013: Progress and challenges of Warn-on-
Forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/j.
atmosres.2012.04.004.

Sun, J., 2005: Initialization and numerical forecasting of a super-
cell storm observed during STEPS. Mon. Wea. Rev., 133,
793–813, https://doi.org/10.1175/MWR2887.1.

}}, and Y. Zhang, 2008: Analysis and prediction of a squall line
observed during IHOP using multiple WSR-88D observa-
tions. Mon. Wea. Rev., 136, 2364–2388, https://doi.org/10.1175/
2007MWR2205.1.

Tangborn, A., B. Demoz, B. J. Carroll, J. Santanello, and J. L.
Anderson, 2021: Assimilation of lidar planetary boundary
layer height observations. Atmos. Meas. Tech., 14, 1099–1110,
https://doi.org/10.5194/amt-14-1099-2021.

Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall,
2008: Explicit forecasts of winter precipitation using an im-
proved bulk microphysics scheme. Part II: Implementation of
a new snow parameterization. Mon. Wea. Rev., 136, 5095–
5115, https://doi.org/10.1175/2008MWR2387.1.

Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation
of Doppler radar data with a compressible nonhydrostatic
model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807,
https://doi.org/10.1175/MWR2898.1.

Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensem-
ble-variational (4DEnsVar) data assimilation: Formulation
and single-resolution experiments with real data for NCEP
global forecast system. Mon. Wea. Rev., 142, 3303–3325,
https://doi.org/10.1175/MWR-D-13-00303.1.

}}, D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based
ensemble-variational hybrid data assimilation for NCEP global
forecast system: Single-resolution experiments. Mon. Wea. Rev.,
141, 4098–4117, https://doi.org/10.1175/MWR-D-12-00141.1.

Weckwerth, T. M., and D. B. Parsons, 2006: A review of convec-
tion initiation and motivation for IHOP_2002. Mon. Wea.
Rev., 134, 5–22, https://doi.org/10.1175/MWR3067.1.

Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J.
Creager, 2015: Storm-scale data assimilation and ensemble
forecasting with the NSSL experimental Warn-on-Forecast

System. Part I: Radar data experiments. Wea. Forecasting,
30, 1795–1817, https://doi.org/10.1175/WAF-D-15-0043.1.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimila-
tion without perturbed observations. Mon. Wea. Rev., 130,
1913–1924, https://doi.org/10.1175/1520-0493(2002)130,1913:
EDAWPO.2.0.CO;2.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.
3rd ed. International Geophysics Series, Vol. 100, Academic
Press, 704 pp.

Wu, W.-S., R. J. Pursuer, and D. F. Parrish, 2002: Three-dimensional
variational analysis with spatially inhomogeneous covariances.
Mon. Wea. Rev., 130, 2905–2916, https://doi.org/10.1175/1520-
0493(2002)130,2905:TDVAWS.2.0.CO;2.

Xu, Q., C.-J. Qiu, H.-D. Gu, and J.-X. Yu, 1995: Simple adjoint
retrievals of microburst winds from single-Doppler radar
data. Mon. Wea. Rev., 123, 1822–1833, https://doi.org/10.1175/
1520-0493(1995)123,1822:SAROMW.2.0.CO;2.

Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and
D. J. Stensrud, 2013: The ensemble Kalman filter analyses
and forecasts of the 8 May 2003 Oklahoma City tornadic
supercell storm using single- and double-moment microphys-
ics schemes. Mon. Wea. Rev., 141, 3388–3412, https://doi.org/
10.1175/MWR-D-12-00237.1.

}}, D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M.
Wheatley, 2015: Storm-scale data assimilation and ensemble
forecasts for the 27 April 2011 severe weather outbreak in
Alabama. Mon. Wea. Rev., 143, 3044–3066, https://doi.org/10.
1175/MWR-D-14-00268.1.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate
and observation availability on convective-scale data assimila-
tion with an ensemble Kalman filter. Mon. Wea. Rev., 132,
1238–1253, https://doi.org/10.1175/1520-0493(2004)132,1238:
IOIEAO.2.0.CO;2.

}}, Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009:
Cloud-resolving hurricane initialization and prediction through
assimilation of Doppler radar observations with an ensemble
Kalman filter. Mon. Wea. Rev., 137, 2105–2125, https://doi.org/
10.1175/2009MWR2645.1.

}}, M. Minamide, and E. E. Clothiaux, 2016: Potential im-
pacts of assimilating all-sky infrared satellite radiances
from GOES-R on convection-permitting analysis and pre-
diction of tropical cyclones. Geophys. Res. Lett., 43, 2954–
2963, https://doi.org/10.1002/2016GL068468.

Zhang, Y., F. Zhang, and D. J. Stensrud, 2018: Assimilating
all-sky infrared radiances from GOES-16 ABI using an en-
semble Kalman filter for convection-allowing severe thun-
derstorms prediction. Mon. Wea. Rev., 146, 3363–3381,
https://doi.org/10.1175/MWR-D-18-0062.1.

}}, D. J. Stensrud, and F. Zhang, 2019: Simultaneous assimi-
lation of radar and all-sky satellite infrared radiance ob-
servations for convection-allowing ensemble analysis and
prediction of severe thunderstorms. Mon. Wea. Rev., 147,
4389–4409, https://doi.org/10.1175/MWR-D-19-0163.1.

}}, E. E. Clothiaux, and D. J. Stensrud, 2022: Correlation struc-
tures between satellite all-sky infrared brightness tempera-
tures and the atmospheric state at storm scales. Adv. Atmos.
Sci., 39, 714–732, https://doi.org/10.1007/s00376-021-0352-3.

Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada,
2013: Impacts of assimilation of ATMS data in HWRF on
track and intensity forecasts of 2012 four landfall hurricanes.
J. Geophys. Res. Atmos., 118, 11 558–11576, https://doi.org/
10.1002/2013JD020405.

E URE E T AL . 813MARCH 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/27/24 06:08 PM UTC

https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175//2555.1
https://doi.org/10.1175/MWR-D-14-00126.1
https://doi.org/10.1175/MWR-D-14-00126.1
https://doi.org/10.1061/(ASCE)0733-9453(1994)120:3(115)
https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<3503:EOPMMR>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0526:MMEFOT>2.0.CO;2
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/MWR2887.1
https://doi.org/10.1175/2007MWR2205.1
https://doi.org/10.1175/2007MWR2205.1
https://doi.org/10.5194/amt-14-1099-2021
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/MWR2898.1
https://doi.org/10.1175/MWR-D-13-00303.1
https://doi.org/10.1175/MWR-D-12-00141.1
https://doi.org/10.1175/MWR3067.1
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/MWR-D-14-00268.1
https://doi.org/10.1175/MWR-D-14-00268.1
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/2009MWR2645.1
https://doi.org/10.1175/2009MWR2645.1
https://doi.org/10.1002/2016GL068468
https://doi.org/10.1175/MWR-D-18-0062.1
https://doi.org/10.1175/MWR-D-19-0163.1
https://doi.org/10.1007/s00376-021-0352-3
https://doi.org/10.1002/2013JD020405
https://doi.org/10.1002/2013JD020405

